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UVRR Spectroscopy of the Metal Receptor Site in
MerR
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Although cysteine coordination to'imetal transition-metal
ions is observed in an increasing number of metal detoxifichtion
and metal chaperone proteihghere are still relatively few
methods for probing such coordination environments. These metal
centers have a closed-shell electronic structure and thus exhibit
few spectroscopic handles. Thé&’dhetals bound to cysteinate q
ligands in proteins exhibit broad and intense ligand-to-metal g-MerR
charge transfer (LMCT) transitions in the 20800 nm regior?. 238 nm
We demonstrate here that it is possible to use ultraviolet (UV)
laser excitation into these LMCT transitions df-thiolate centers + . ; . ; :
in metalloproteins to obtain resonance enhancement of metal 200 400 600 8
ligand Raman bands. UV resonance Raman (UVRR) spectra are Raman Shift [Cm'l]
presented for a trigonal mercuric complex of an aliphatic thiolate
[EtN][Hg(SBU)3] (1), and for the Hg-MerR metalloregulatory  Figure 1. UVRR spectra ofl (26 mM, acetonitrile, 229 nm excitation,
protein, a heavy metal receptor component of an Hg(ll)-responsive top) and of Hg-MerR (238 nm excitation, bottom). Solvent and quartz
genetic switch. Our spectroscopic data indicate that Hg(ll) is bands are labeled as (s) and (q), respectively.
trigonally coordinated in HgMerR and give support to results »
of EXAFS data site-directed mutagenesis studieand UV Table 1. Absolute Intensitiesfor Bands of [E{N][Hg(SBU)q]
absorptior?;® most recently by**Hg NMR.” These results indicate gg:ﬂggﬁand for the 288 cm Band of Aqueous HgMerR
that UVRR is a powerful probe of metalloprotein active sites
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containing d°thiolate centers. exc. O2ss
wavelength [nm] 027  03a1  Osgs og20  Hg—MerR
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Figure 2. UV-absorption spectrum (top) and absolute Raman intensities
for bands (lower panels) df.

corresponding Cd(ll) and Zn(ll) compounds, and they were
assigned to a mode of the SBwoup!® An alternative assignment
to the asymmetric HgS stretching mode is ruled out by the
excessive separation, 134 tinfrom the symmetric stretching
frequency. For trigonally coordinated HgX in tri-n-butyl
phosphate solution (TBP) the separation betweemdv,sHg-X

is less than 25 cni for X = ClI, Br, I. Moreover, thev,s Hg—S

of 1 has been assigned to infrared barats208 (298 K) and 212
(125 K) cn1?, essentially coincident withs Hg—S (which is IR-
forbidden).
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which are assigned to the symmetric-Hg[cys] stretching mode
and to ther; mode of tyrosine, respectivelyMerR was purified?
and its Hg(ll) derivative made as previously describe@he
absolute Raman intensity of the 288 ¢hvand is essentially the
same as that of the 207 cfband of1, when measured at 229
nm (Table 1), but is larger at longer wavelengths. LMCT
transitions of Hg-MerR have previously been reported in the
200—-300 nm region of absorption difference speétra.

Why is thevs HgS frequency so much lower (81 chy for 1
than for Hg—MerR, even though the average H§ bond lengths
are the same (244 pn?)¥ The answer lies in the large effective
mass of the SBdigand. For [Hg(SMej]~ dissolved in ethanol a
Raman band at 282 crhhas been assigned toHg—S, much
closer to the Hg-MerR frequency. The difference is that SMe
has only H atoms attached to the, @vhile BUS™ has much
heavier CH groups. Indeed, it has been observed that the
frequencies scale as the square root of the total ligand mass for
[Hg(SMe)]~ and [Hg(SBYs]~,'* as well as for [Au(SMe) and
[Au(SBU),].* However, this simple behavior is deceptive because
other thiolate ligands deviate from it. For example, the
frequency is much higher for Hg(SBy, 325 cn?, than for Hg-
(SBU),, 223 cn1?, even though the ligand masses are the same.
Moreover the Hg(SBY), frequency is quite similar to those of
the lighter homologues Hg(SPs[329 cn1!] and Hg(SEt) [ 304
cm™1.17 Clearly the frequency depends not on the total ligand
mass, but rather on the nature of the substituents on tla¢o@:
three alkyl C atoms for SBibut one alkyl C atom and two H
atoms for SEt, SPyand Sbi.

This issue is important with respect to using the protein
frequency as a gauge of coordination number. It is well-established
that the v frequency decreases as the coordination number
increases. Thus, the frequency is 328, 296, and 265 dar
HgCl,, HgCk™, and HgCJ?~, in TBP solvent’ Interestingly, the
HgCl, and HgC}~ frequencies are close to those of the Hg(S
n-alkyl), species on one hand and Hg(SMe)as well as Hg
MerR, on the other. Likewise, the frequency for an oligopeptide
serving as a model for 2-coordinate Hg[cys] proteing? 327
cm i, is essentially the same as that of HgQlhus CI serves
as a good vibrational model foralkyl as well as methyl thiolates.
However, the exact frequency obviously depends on the interac-
tion of the Hg-S stretching coordinate with other coordinates of

Raman intensities were measured relative to solvent bands ashe thiolate ligands. This issue will be addressed in a separate
a function of excitation wavelength (Table 1), and the resulting vibrational analysig?

excitation profiles (Figure 2) are consistent with enhancement of

both Hg—S and internal ligand modes in resonance with the UV
absorption bands between 230 and 280 nm (4358700 cnT?),
which have previously been assigned to-S Hg LMCT
transitions® Thus, the LMCT state is displaced along ligand
coordinates, as well as the metdéiband stretching coordinate,
as has previously been observed for—=*2 and Cu-S'4°
proteins.

The UVRR spectrum of HgMerR at 238 nm excitation
(Figure 1, bottom) exhibits sample bands at 288 and 852',cm
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