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Although cysteine coordination to d10-metal transition-metal
ions is observed in an increasing number of metal detoxification1

and metal chaperone proteins,2 there are still relatively few
methods for probing such coordination environments. These metal
centers have a closed-shell electronic structure and thus exhibit
few spectroscopic handles. The d10-metals bound to cysteinate
ligands in proteins exhibit broad and intense ligand-to-metal
charge transfer (LMCT) transitions in the 200-300 nm region.3

We demonstrate here that it is possible to use ultraviolet (UV)
laser excitation into these LMCT transitions of d10-thiolate centers
in metalloproteins to obtain resonance enhancement of metal-
ligand Raman bands. UV resonance Raman (UVRR) spectra are
presented for a trigonal mercuric complex of an aliphatic thiolate
[Et4N][Hg(SBut)3] (1), and for the Hg-MerR metalloregulatory
protein, a heavy metal receptor component of an Hg(II)-responsive
genetic switch. Our spectroscopic data indicate that Hg(II) is
trigonally coordinated in Hg-MerR and give support to results
of EXAFS data,4 site-directed mutagenesis studies,5 and UV
absorption,3,6 most recently by199Hg NMR.7 These results indicate
that UVRR is a powerful probe of metalloprotein active sites
containing d10-thiolate centers.

The 229-nm excited UVRR spectrum of1 (Figure 1, top),8,9

prepared by a literature method,10 contains bands at 820, 588,
341, and 207 cm-1, in addition to background features due to the
quartz sample tube [marked q], and an acetonitrile solvent band
at 380 cm-1. The bands at 588 and 820 cm-1 are assigned to the
C-S and the C-C stretching mode, respectively, by comparison
with spectra and assignments of pure liquidtert-butanethiol.11,12

The band at 207 cm-1 is assigned to the symmetric HgS stretching
mode.9 The band at 341 cm-1 is assigned to an internal ligand
mode, most likely CCS bending, since bands at similar positions
are seen in solid-state Raman spectra of Hg(SBut)2 and the
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Figure 1. UVRR spectra of1 (26 mM, acetonitrile, 229 nm excitation,
top) and of Hg-MerR (238 nm excitation, bottom). Solvent and quartz
bands are labeled as (s) and (q), respectively.

Table 1. Absolute Intensitiesa for Bands of [Et4N][Hg(SBut)3]
Solutionband for the 288 cm-1 Band of Aqueous Hg-MerR
Solutionc

exc.
wavelength [nm] σ207 σ341 σ588 σ820

σ288

Hg-MerR

229 76 32 42 53 83 (89)
238 42 28 5 14 81 (83)
244 45 22 0 0 117
257 37 14 0 0 115
676d 0.002 0 0.002 0.008

a Expressed in units of cross section, [millibarns/(molecule stera-
dian)], 1 barn) 10-24 cm2. b Acetonitrile bands at 379 and 918 cm-1

as internal standard (ref 2).c 932 cm-1 band of 0.2 M NaClO4 added
as internal standard.20 Values in brackets based on tyrosine modes
located at 1176 (ν9a), 1205 (ring-C) and 1613 cm-1 (ν8a) with previously
determined absolute intensities.21 d Kr+ (Coherent), Spex 1877 triple
spectrometer equipped with an intensified diode array detector (Prin-
ceton Instruments).

12690 J. Am. Chem. Soc.1998,120,12690-12691

10.1021/ja9830703 CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/20/1998



corresponding Cd(II) and Zn(II) compounds, and they were
assigned to a mode of the SBut group.13 An alternative assignment
to the asymmetric Hg-S stretching mode is ruled out by the
excessive separation, 134 cm-1, from the symmetric stretching
frequency. For trigonally coordinated HgX3

- in tri-n-butyl
phosphate solution (TBP) the separation betweenνs andνasHg-X
is less than 25 cm-1 for X ) Cl, Br, I. Moreover, theνas Hg-S
of 1 has been assigned to infrared bands3 at 208 (298 K) and 212
(125 K) cm-1, essentially coincident withνs Hg-S (which is IR-
forbidden).

Raman intensities were measured relative to solvent bands as
a function of excitation wavelength (Table 1), and the resulting
excitation profiles (Figure 2) are consistent with enhancement of
both Hg-S and internal ligand modes in resonance with the UV
absorption bands between 230 and 280 nm (43500-35700 cm-1),
which have previously been assigned to Sf Hg LMCT
transitions.3 Thus, the LMCT state is displaced along ligand
coordinates, as well as the metal-ligand stretching coordinate,
as has previously been observed for Fe-S14a and Cu-S14b

proteins.
The UVRR spectrum of Hg-MerR at 238 nm excitation

(Figure 1, bottom) exhibits sample bands at 288 and 852 cm-1,

which are assigned to the symmetric Hg-S[cys] stretching mode
and to theν1 mode of tyrosine, respectively.15 MerR was purified16

and its Hg(II) derivative made as previously described.17 The
absolute Raman intensity of the 288 cm-1 band is essentially the
same as that of the 207 cm-1 band of1, when measured at 229
nm (Table 1), but is larger at longer wavelengths. LMCT
transitions of Hg-MerR have previously been reported in the
200-300 nm region of absorption difference spectra.5

Why is theνs HgS frequency so much lower (81 cm-1) for 1
than for Hg-MerR, even though the average Hg-S bond lengths
are the same (244 pm)?3,17 The answer lies in the large effective
mass of the SBut ligand. For [Hg(SMe)3]- dissolved in ethanol a
Raman band at 282 cm-1 has been assigned toν Hg-S, much
closer to the Hg-MerR frequency. The difference is that SMe-

has only H atoms attached to the Ca, while ButS- has much
heavier CH3 groups. Indeed, it has been observed that the
frequencies scale as the square root of the total ligand mass for
[Hg(SMe)3]- and [Hg(SBut)3]-,11 as well as for [Au(SMe)2] and
[Au(SBut)2].4 However, this simple behavior is deceptive because
other thiolate ligands deviate from it. For example, theνs

frequency is much higher for Hg(SBun)2, 325 cm-1, than for Hg-
(SBut)2, 223 cm-1, even though the ligand masses are the same.
Moreover the Hg(SBun)2 frequency is quite similar to those of
the lighter homologues Hg(SPrn)2 [329 cm-1] and Hg(SEt)2 [ 304
cm-1].17 Clearly the frequency depends not on the total ligand
mass, but rather on the nature of the substituents on the Ca atom:
three alkyl C atoms for SBut but one alkyl C atom and two H
atoms for SEt, SPrn, and Sbun.

This issue is important with respect to using the protein
frequency as a gauge of coordination number. It is well-established
that the νs frequency decreases as the coordination number
increases. Thus, the frequency is 328, 296, and 265 cm-1 for
HgCl2, HgCl3-, and HgCl42-, in TBP solvent.17 Interestingly, the
HgCl2 and HgCl3- frequencies are close to those of the Hg(S-
n-alkyl)2 species on one hand and Hg(SMe)3

-, as well as Hg-
MerR, on the other. Likewise, the frequency for an oligopeptide
serving as a model for 2-coordinate Hg-S[cys] proteins,18 327
cm-1, is essentially the same as that of HgCl2. Thus Cl- serves
as a good vibrational model forn-alkyl as well as methyl thiolates.
However, the exact frequency obviously depends on the interac-
tion of the Hg-S stretching coordinate with other coordinates of
the thiolate ligands. This issue will be addressed in a separate
vibrational analysis.19
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Figure 2. UV-absorption spectrum (top) and absolute Raman intensities
for bands (lower panels) of1.
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